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Abstract

The low signal-to-noise ratio in emission data has stimulated the development of statistical image reconstruction

methods based on the maximuma posteriori(MAP) principle. Experimental examples have shown that statistical

methods improve image quality compared to the conventional filtered backprojection (FBP) method. However,

these results depend on isolated data sets. Here we study the lesion detectability of MAP reconstruction theoreti-

cally, using computer observers. These theoretical results can be applied to different object structures. They show

that for a quadratic smoothing prior, the lesion detectability using the prewhitening observer is independent of the

smoothing parameter and the neighborhood of the prior, while the non-prewhitening observer exhibits an optimum

smoothing point. We also compare the results to those of FBP reconstruction. The comparison shows that for ideal

positron emission tomography (PET) systems (where data are true line integrals of the tracer distribution) the MAP

reconstruction has a higher signal-to-noise ratio for lesion detection than FBP reconstruction due to the modeling of

the Poisson noise. For realistic systems, MAP reconstruction further benefits from accurately modeling the physical

photon detection process in PET.
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I. I NTRODUCTION

Statistical image reconstruction methods based on the maximuma posteriori(MAP) principle (or max-

imizing a penalized likelihood function) have been developed for positron emission tomography (PET)

to improve image quality [1], [2], [3], [4]. While most PET data are currently reconstructed using the

filtered backprojection (FBP) algorithm, accuracy of the reconstructed images is limited by the approxi-

mations implicit in the line integral model on which the reconstruction formulae are based. In contrast,

statistical methods can adopt arbitrarily accurate models for the mapping between the source volume and

the acquired data (sinograms). The second limitation of the analytic approaches is that they do not take

account of the statistical variability inherent in photon-limited coincidence detection. The resulting noise

in FBP reconstructions is controlled, at the expense of resolution, by varying the cut-off frequency of a

linear filter applied to the sinogram. Since the noise is signal dependent, this type of filtering is not partic-

ularly effective at achieving a good bias-variance trade-off. In contrast, statistical approaches explicitly

model the noise associated with photon-limited data.

Experimental results have shown that MAP reconstruction can achieve a better resolution and variance

trade-off compared to the FBP method. However, these results depend on isolated data sets, and the res-

olution and variance curve may not reflect the outcome of clinical applications of PET. In this paper we
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theoretically study the benefit of using MAP reconstruction in one of the major applications of clinical

PET: lesion detection [5], [6]. A standard methodology for comparing lesion detectability is the receiver

operating characteristic (ROC) study that compares true positive vs. false positive rates for human ob-

servers for the task of lesion detection in images reconstructed using two or more different methods [7],

[8], [9]. However, the human observer ROC study is extremely time-consuming. To overcome this prob-

lem, computer observers based on signal detection theory have been developed. Computer observers

allow fast evaluation of different algorithms and also provide the possibility of theoretical analysis of

lesion detectability. There is a substantial body of literature dealing with the development of computer

observers with comparison to human observers, and using them in ROC studies [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21]. Research is active in the search for better computer observer

models that match human performance in a wide range of situations. Here we use two typical linear com-

puter observers, the prewhitening observer and the non-prewhitening observer, to theoretically analyze

the lesion detectability of MAP reconstructions. The results not only provide a theoretical proof of the

improvement in lesion detection using MAP reconstruction, but will be useful for optimization of MAP

reconstruction algorithms1 and PET system design [22].

The paper is organized as follows. The formulations of MAP reconstruction and computer observers

are described in Section II. In Section III, we derive the theoretical expressions for lesion detectability

of MAP reconstructions. For comparison, the theoretical results are also derived for FBP reconstruction

in Section IV. The improvements in lesion detection using MAP reconstruction compared to FBP are

shown in Section V. Finally, conclusions and discussions are presented in Section VI.

II. BACKGROUND

A. MAP Reconstruction

PET data are well modeled as a collection of independent Poisson random variables, and the appropri-

ate log-likelihood function is given by

L(y|x) =
∑

i

(yi log ȳi − ȳi − log yi!) , (1)

wherex ∈ IRN×1 is the unknown image,y ∈ IRM×1 the measured sinogram, andȳ ∈ IRM×1 the mean

of the sinogram. The mean sinogram,ȳ, is related to the image,x, through an affine transform

ȳ = Px + s + r, (2)
1Note that when the prior term is made data-adaptive, the algorithm ceases to be a true Bayesian method.
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whereP ∈ IRM×N is the detection probability matrix, ands ∈ IRM×1 andr ∈ IRM×1 account for the

presence of scatter and randoms in the data, respectively.

The detection probability matrixP can be modeled using a factored matrix approach

P = PsensPattnPsys, (3)

wherePsys is a projection matrix determined by the PET system, with each element(i, j) equal to the

probability of a photon pair produced in voxelj being detected by the detector pairi in the absence

of attenuation and assuming uniform detector sensitivity.Psys can be factored further as a product of a

geometric projection matrix and a sinogram blurring matrix to efficiently model the depth dependent ge-

ometric sensitivity and detector response as proposed in [23], [24].Pattn andPsens are diagonal matrices

containing the attenuation factors and normalization factors, respectively.

Most image priors in PET image reconstruction use a Gibbs distribution of the form

1
Z

e−βU(x), (4)

whereU(x) is the energy function,β is the smoothing parameter that controls the resolution of the

reconstructed image, andZ is a normalization constant. Here we focus on the widely used quadratic

priors, for which the energy function can be expressed as

U(x) =
1
2

x′Rx, (5)

whereR is a positive definite (or semidefinite2) matrix. Pair-wise membrane priors and thin-plate priors

are special cases of (5).

Combining the likelihood function and the image prior, the MAP reconstruction is found as

x̂(y) = arg max
x≥0

[L(y|x) − βU(x)] . (6)

SinceL(y|x) is a concave function ofx, (6) generally has a unique solution for convex priors.

B. Lesion Detection

Detecting a cancerous lesion in a PET image involves searching for an abnormal “hot spot” in a known

background. The performance of the detection is often measured by ROC. Here we use a “signal-known-

exactly, background-known-exactly” (SKE-BKE) computer observer ROC to study the lesion detectabil-

ity of MAP and FBP reconstruction. The computer observers that we used are the prewhitening (PW)

observer and the non-prewhitening (NPW) observer [10], [11].
2Strictly speaking, whenR is semidefinite, the normalization constantZ = ∞.
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Both observers compute a linear test statistic,η(x̂), from the reconstructed imagêx. The PW observer

corresponds to a likelihood ratio test on a Gaussian distributed image for which the covariance matrix is

known. The NPW observer is similar but does not use the covariance matrix. The decision whether there

is a lesion or not is then made by comparing this statistic to a preselected threshold. Ifη(x̂) exceeds the

decision threshold,̂x is determined to have a lesion, otherwise it is not.

Let f l be the lesion profile andf0 the background image. As we are particularly interested in detection

of small lesions, we can assume the lesion is so small that it hardly changes the noise in the data. Thus,

the noise in̂x is independent of the presence of the lesion. Leth(f0 + f l) andh(f0) denote the mean

reconstructions of the image with and without the lesion present, respectively. Then the test statistic of

the PW observer is

ηPW(x̂) =
[h(f0 + f l) − h(f0)]

′ Σ−1 [x̂ − h(f0)]
[h(f0 + f l) − h(f0)]

′ Σ−1 [h(f0 + f l) − h(f0)]
=

z′Σ−1 [x̂ − h(f0)]
z′Σ−1z

, (7)

whereΣ is the covariance matrix of̂x and

z ≡ h(f0 + f l) − h(f0) (8)

is the observer template. The test statistic,ηPW(x̂), has been normalized such that it is null whenx̂ =

h(f0) and is unity when̂x = h(f0 + f l), but it is not restricted to this range of values. The observer

detection performance can be measured by the signal-to-noise ratio (SNR) ofηPW(x̂)

SNR2[ηPW(x̂)] =
{ηPW [h(f0 + f l)] − ηPW [h(f0)]}2

var[ηPW(x̂)]
=

1
var[ηPW(x̂)]

= z′Σ−1z. (9)

Whenη(x̂) is normally distributed, theSNR is related to the area under the ROC curve (AUC) by [11]

AUC =
1
2

[
1 + erf

(
SNR

2

)]
,

whereerf(x) is the error function.

The NPW observer uses a simple matched filter to compute the test statistic

ηNPW(x̂) =
z′ [x̂ − h(f0)]

z′z
. (10)

Eq.(10) differs from (7) only by deletion ofΣ−1 that accounts for the prewhitening operation. It is

also normalized to have the values of unity and null for mean images with and without lesion present,

respectively. The SNR of the NPW observer is given by

SNR2[ηNPW(x̂)] =
1

var[ηNPW(x̂)]
=

(z′z)2

z′Σz
. (11)
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It is easy to show thatSNRNPW ≤ SNRPW for anyz andΣ, where equality is achieved if and only

if Σ = I (up to a scaling factor). This indicates that the NPW observer is inferior to the PW observer in

terms of detecting lesions. In fact, with Gaussian noise, the PW observer gives the optimal performance

for lesion detection.

It has been found that in many situations the PW observer correlates with human performance, espe-

cially when noise correlation is introduced by the randomness of signal and background [25], [26]. How-

ever, the prewhitening step does make the PW observer immune to any invertible post filtering while, on

the other hand, human observers often benefit from proper post filtering. Myerset al. [27], [28] found

that with bandpass or high-pass post filtering, the NPW observer and channelized prewhitening observers

predict human performance better than the PW observer.

Channelized observers have gained much interest since Yaoet al. [12] showed that they have good

correlation with human performance under both post filtering and random background situations. Re-

search has been conducted to compare channelized observers with human observers for various task [15],

[18], [19], [20], [21]. Most papers show favorable results, but counter results also exist [19]. The rel-

ative performance of different channel functions is also dependent on the lesion being detected and the

background [15], [21].

Not attempting to determine the best predictor of human performance, for sake of simplicity, we choose

the PW observer and the NPW observer. Extension of the analysis to other linear observers, such as the

channelized Hotelling observer [12], is relatively straightforward. In fact, the PW and NPW observers

can be viewed as special cases of channelized observers: the PW observer uses the maximum number of

unoverlapped channels, and the NPW observer uses only one channel with the channel response being

the impulse response function of the matched filter. Hence, we expect that the performance of other

channelized observers will lie between these two extremes.

Since the PW observer is immune to any invertible post filtering, we do not expect it to predict human

performance; however, it will tell how much information contained in the reconstructed image can be

used for lesion detection, and it will give an upper bound of lesion detectability that is achievable when

all the information is used. By comparing the SNR of the PW observer on a reconstructed image with the

SNR of the PW observer on the corresponding raw sinogram, one can find out whether a reconstruction

algorithm throws away any useful information for lesion detection. The NPW observer will have better

correlation to human performance and will show how well a human might perform the same task.
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III. L ESION DETECTABILITY OF MAP RECONSTRUCTION

A. Observer Template for MAP Reconstruction

The MAP estimator (6) is nonlinear in the data and its properties are object dependent. Even for linear

estimators such as FBP, the noise properties are still spatially variant due to the Poisson statistics in the

data. Therefore, we study the lesion detectability locally assuming local stationarity in the image [29].

This assumption has been successfully used in analyzing the resolution and noise properties of 2D and

3D PET reconstructions with little degradation in accuracy [29], [30], [31].

Since the lesion is quite small, we can compute the observer template using a first order Taylor series

expansion of the MAP reconstruction̂x(y) at the pointy = ȳ = Pf0 + s + r:

x̂(y) ≈ x̂(ȳ) + ∇yx̂(ȳ)(y − ȳ). (12)

This approximation has been widely used in analyzing the first and second order statistics of the maximum

likelihood (ML) reconstruction and MAP reconstruction with quadratic priors [29], [30], [31], [32], [33].

As a result, we have

zMAP = ∇yx̂(ȳ)Pf l. (13)

Now we restrict our attention to the situations where the solution of (6) satisfies

0 =
∂

∂xj
[L(y|x) − βU(x)]

∣∣∣x=x̂(y), j = 1, . . . , M. (14)

While this assumption precludes inequality constraints, it appears to work well except for regions with

very low activity. Differentiating (14) with respect toyi by applying the chain rule and solving the

resulting equation, we get [32]

∇yx̂(ȳ) =
{
−∇xx [L(y|x) − βU(x)] |x=x̂(y)

}−1 ∇xy [L(y|x) − βU(x)] |x=x̂(y)

=

{
P ′ diag

[
ȳi

(P x̂ + s + r)2i

]
P + βR

}−1

P ′ diag
[

1
(P x̂ + s + r)i

]
, (15)

where the(j, k)th element of the operator∇xx is ∂2

∂xj∂xk
, the (j, l)th element of the operator∇xy is

∂2

∂xj∂yl
, and diag[yi] denotes a diagonal matrix with the(i, i)th element equal toyi.

In general,̂x is a slightly blurred version ofx, so the projectionP x̂ + s + r is approximately equal to

the mean of the data,̄y. Therefore, we can simplify the above expression to

∇yx̂(ȳ) ≈ [F + βR]−1P ′ diag
[

1
ȳi

]
, (16)
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whereF = P ′ diag
[

1
ȳi

]
P is the Fisher information matrix. Substituting (16) into (13) results in

zMAP ≈ [F + βR]−1Ff l. (17)

Let f l be a small lesion centered at voxelj. Now we use the local invariant approximation as proposed

in [29] to simplify (17) to

zMAP ≈ [F (j) + βR]−1F (j)f l, (18)

whereF (j) is a locally invariant approximation ofF at voxelj, i.e., F (j) is a block Toeplitz positive

semidefinite matrix with thejth column approximately equal to thejth column ofF [29]. To further

simplify the analysis, we can approximateF (j) by [29], [30], [33]

F (j) ≈ κ2
jS(j), (19)

whereS(j) is the local invariant approximation ofP ′
sysPsys at voxelj, andκ2

j is

κ2
j ≡ 1∑

i g
2
ij

∑
i

g2
ija

2
i n

2
i

ȳi
, (20)

wheregij is the (i, j)th element inPsys, ai andni are (i, i)th diagonal elements ofPattn andPsens,

respectively. HereP ′
sysPsys is not required to be spatially invariant as in [33]. When the factored matrix is

used forPsys as in [23], [24], the approximation proposed in [29] (Eq. (14)) can be used in place of (20).

Since nonzero elements inS(j) andR(j) are located only around the diagonal of each block,S(j) and

R(j) can be approximated by block circulant matrices, and their approximate inverses can be computed

using Fourier transforms [29], [34]. Hence we can writezMAP in the following compact form:

zMAP ≈ Q′Q [F (j) + βR(j)]−1 Q′QF (j)Q′Qf l

≈ Q′ [QF (j)Q′ + βQR(j)Q′]−1 [QF (j)Q′]Qf l

≈ Q′ diag

[
λi(j)

λi(j) + βµi/κ2
j

]
Qf l (21)

where{λi(j), i = 1, . . . , N} is the Fourier transform ofS(j) and{µi, i = 1, . . . , N} is the Fourier

transform ofR. Q andQ′ represent the Kronecker form of the FFT and its inverse, respectively.

B. Covariance Matrix of MAP Reconstruction

When noise in the reconstruction is small compared to the mean of background, which is often the case

in PET, we can obtain the following approximation of the covariance matrix of MAP reconstruction from
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(12) and (16) [32]

Σ(x̂) ≈ ∇yx̂(ȳ)cov(y)[∇yx̂(ȳ)]′

≈ [F + βR]−1F [F + βR]−1. (22)

Using the local invariant approximation and the approach described in the previous section, we can

write the covariance matrix for thejth voxel as [29]

Σj(x̂) ≈ [F (j) + βR(j)]−1F (j)[F (j) + βR(j)]−1

≈ Q′ diag

[
λi(j)/κ2

j

(λi(j) + βµi/κ2
j )2

]
Q. (23)

C. SNR of MAP Reconstruction

Substituting (21) and (23) into (9), we get theSNRPW of the PW observer for detecting lesions with

MAP reconstruction:

SNR2
PW,MAP = z′

MAP [Σj(x̂)]−1 zMAP

≈ f ′
lQ

′ diag

[
λi(j)

λi(j) + βµi/κ2
j

(λi(j) + βµi/κ2
j )

2

λi(j)/κ2
j

λi(j)
λi(j) + βµi/κ2

j

]
Qf l

= κ2
jf

′
lQ

′ diag [λi(j)] Qf l

= κ2
jf

′
lP

′
sysPsysf l . (24)

Note that (24) shows thatSNRPW is independent of the quadratic prior functionR and the smoothing

parameterβ and is equal to that of the ML solution. This is because the quadratic prior function does

not differentiate changes in signal and noise, and they are equally penalized. Hence, using the quadratic

prior function does not add any information to the reconstruction. Within the accuracy of the above

approximations,SNRPW,MAP is equal to theSNR of the PW observer applied directly in the sinogram

domain. This indicates that MAP reconstruction retains all information in the data.

Similarly, we can getSNRNPW for the NPW observer by substituting (21) and (23) into (11):

SNR2
NPW,MAP =

(z′
MAPzMAP)2

z′
MAPΣj(x̂)zMAP

≈

f ′

lQ
′ diag


( λi(j)

λi(j) + βµi/κ2
j

)2

Qf l




2

×
(

1
κ2

j

f ′
lQ

′ diag

[
λ3

i (j)
(λi(j) + βµi/κ2

j )4

]
Qf l

)−1

= κ2
j


∑

i

(
λi(j)ζi

λi(j) + βµi/κ2
j

)2



2(
N
∑

i

λ3
i (j)ζ

2
i

(λi(j) + βµi/κ2
j )4

)−1

, (25)
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where{ζi, i = 1, . . . , N} is the Fourier transform of the lesion imagef l.

Unlike SNRPW,MAP for the PW observer shown in (24), the NPW observerSNRNPW,MAP is a func-

tion of the smoothing parameterβ and the prior neighborhood, which is consistent with human experi-

ence. (See Fig. 3 for an example of a curve of (25).) Both (24) and (25) show that the lesion detectability

is spatially variant and dependent on the uncertainty information at the lesion location. The more infor-

mation we have at the location (largerκj), the higher the detectability.

IV. L ESION DETECTABILITY OF FBP RECONSTRUCTION

A. Observer Template and Covariance Matrix

For comparison purposes we will derive SNR for lesion detection using FBP reconstructions in this

section. FBP reconstruction can be written as

xFBP = F IBP−1
sensP

−1
attny, (26)

whereF I is the image space reconstruction filter andB is the backprojection matrix for line integral

operator. In general,B is not equal toP ′
sys for real PET systems because of solid angle and detector

blurring effects.

Using linear system theory, the observer template for FBP reconstruction is

zFBP = F IBPsysf l, (27)

and the covariance matrix is

ΣFBP = F IBP−1
sensP

−1
attncov(y)P−1

attnP
−1

sensB
′F ′

I

= F IB diag

[
ȳi

a2
i n

2
i

]
B′F ′

I . (28)

Eq. (28) shows that even though FBP is a linear estimator, the covariance is still spatially variant. To

compute the detectability of the lesion at voxelj, we will simplify the covariance matrix for thejth voxel

using the local invariant approximation. LetH(j) denote the local invariant approximation of

B diag

[
ȳi

a2
i n

2
i

]
B′

at voxelj. As in (19) we approximateH(j) by

H(j) ≈ ξ2
j BB′, (29)
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where

ξ2
j ≡ 1∑

i b
2
ji

∑
i

b2
jiȳi

a2
i n

2
i

. (30)

Then the covariance matrix at voxelj can be approximated by

ΣFBP(j) ≈ ξ2
j F IBB′F ′

I . (31)

This form is similar to the approximations used in [35], [36].

B. SNR of FBP Reconstruction

Substituting (27) and (31) into (9), we get the SNR of the PW observer for detecting lesions in FBP

reconstruction:

SNR2
PW,FBP ≈ 1

ξ2
j

f ′
lP

′
sysB

′F ′
I(F IBB′F ′

I)
−1F IBPsysf l

=
1
ξ2
j

f ′
lP

′
sysB

′(BB′)−1BPsysf l . (32)

Here we assumed the filter functionF I is invertible. Similar toSNRPW,MAP, SNRPW,FBP is also

independent of the smoothing used in reconstruction. The above result is different from that shown in [17]

where noise was assumed to be stationary, which is generally not the case in PET/SPECT reconstructions.

The SNR of the NPW observer for FBP reconstruction can also be computed by

SNR2
NPW,FBP ≈ (f ′

lP
′

sysB
′F ′

IF IBPsysf l)2

ξ2
j f ′

lP
′
sysB

′F ′
IF IBB′F ′

IF IBPsysf l

=
1
ξ2
j

[∑
i w

2
i ζ

2
i λ̃2

i (j)
]2

N
∑

i w
4
i τiζ2

i λ̃2
i (j)

, (33)

where{wi, i = 1, . . . , N} is the Fourier transform ofF I (i.e., the filter frequency coefficients),{τi, i =

1, . . . , N} the Fourier transform ofBB′ (approximately1/r response), and{λ̃i(j), i = 1, . . . , N} the

Fourier transform of the local invariant approximation ofBPsys at voxelj. WhenB′ = P , we have

λ̃i(j) = λi(j).

V. I MPROVEMENTS INLESION DETECTION USING MAP RECONSTRUCTION

A. Ideal PET System with PW Observer

Suppose we have an ideal PET system, where mean data are perfect line integrals of source distribution

(B = P ′
sys). With this assumption (32) reduces to

SNR2
PW,FBP ≈ 1

ξ2
j

f ′
lP

′
sysPsysf l . (34)
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Fig. 1. Ellipse phantom with uniform activity and attenuation coefficient. The point (0,0) corresponds to the radial

center of the detector ring, and the labels are all in centimeter.

In this case the improvement in detectability using MAP reconstruction compared to the FBP method is

SNR2
PW,MAP

SNR2
PW,FBP

≈ κ2
jξ

2
j =

1(∑
i g

2
ij

)2

∑
i

g2
ija

2
i n

2
i

ȳi

∑
i

g2
ij ȳi

a2
i n

2
i

≥ 1(∑
i g

2
ij

)2


∑

i

√
g2
ija

2
i n

2
i

ȳi

√√√√g2
ij ȳi

a2
i n

2
i




2

= 1, (35)

where equality is achieved if and only ifȳ1/(a2
1n

2
1) = ȳ2/(a2

2n
2
2) = · · · = ȳN/(a2

Nn2
N ).

This shows that even for an ideal system, where the PET data are truly line integrals of the source

distribution, the MAP algorithm can still improve the small lesion detectability due to the modeling of

the Poisson statistics of the data. The improvement as shown in (35) is independent of the count level

of the data
∑

i ȳi (there is a general misunderstanding that when the count level increases, the benefit

of MAP reconstruction decreases), the lesion profilef l (provided it is small), and the sensitivity of this

voxel
∑

i g
2
ij . It is dependent on the variation in the elementsȳi/(a2

i n
2
i ) that contribute to this particular

voxel. The larger the variation, the greater the benefit of using the MAP reconstruction.

We conducted a computer simulation to show the improvement in lesion detectability for an ideal

system. We used a uniform activity ellipse phantom as the background (Fig. 1). The attenuation factors,

ai, were calculated by assigning a uniform attenuation coefficient of 0.095 cm−1 inside the phantom,

and detector sensitivities,ni, were 1.0. The data were generated by computing line integrals through the

phantom. As we saw above, the ratio in (35) is independent of the absolute activity level.

We computed the ratio of (35) for the points on thex-axis,y-axis, and diagonalx = y, as shown in

Fig. 1. The results in Fig. 2 show that for this uniform ellipse phantom, the average improvement in lesion
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Fig. 2. Ratio ofSNRMAP overSNRFBP for the voxels on thex-axis,y-axis, and diagonalx = y.

detection that resulted from modeling the Poisson statistics in the data is about 10% for voxels within

10 cm radial offset. The improvement becomes more significant for voxels near the object boundary,

more than 40% for voxels with more than 12 cm radial offset. The improvement will increase if the

object has nonuniformity, since the structures will produce more variation in the projectionȳi/a2
i .

B. Ideal PET System with NPW Observer

For the ideal PET system described in the previous section, the SNR of the NPW observer for FBP

reconstruction reduces to

SNR2
NPW,FBP ≈ 1

ξ2
j

(∑
i w

2
i ζ

2
i λ2

i

)2
N
∑

i w
4
i ζ

2
i λ3

i

. (36)

If we choose the filter to be

wi =
1

λi + βµi/κ2
j

, (37)

(36) changes to

SNR2
NPW,FBP ≈ 1

ξ2
j


∑

i

(
λiζi

λi + βµi/κ2
j

)2



2(
N
∑

i

λ3
i ζ

2
i

(λi + βµi/κ2
j )4

)−1

. (38)

Therefore, we can show that the improvement in lesion detectability with the NPW observer is also

SNR2
NPW,MAP

SNR2
NPW,FBP

≈ κ2
jξ

2
j > 1. (39)

This indicates that modeling the Poisson statistics in PET data should also improve human observer

performance, as the NPW observer is correlated to human observers.
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Effect of Filters on NPW Observer

Eq. (39) is obtained by using (37) as the filter in the FBP algorithm. In practice, filters used in FBP

reconstruction generally take the form of a ramp filter modified by a window function. Some commonly

used filter functions are the ramp filter modified by a rectangular window (rect), the ramp filter modified

by a Hanning window (Hanning), and the Shepp-Logan filter.

To examine the effect of the choice of filters on lesion detection, we plot in Fig. 3 theSNRNPW,FBP

for detecting a point source lesion with different filters as functions of||z||2. To some extent,||z||2 for

a point source can act as a measure of resolution.3 For comparison, we also plot theSNRNPW,FBP with

(37) as the filter function (denoted as “MAP” filter in Fig. 3). Clearly, the ramp filter with rectangular

window has the worst performance. The filters with smooth window functions, Hanning and Shepp, are

nearly the same. The MAP filter gives the best performance among all the filters studied. All the curves

converge at the maximum resolution (||z|| = 1), where all filter functions become the ramp filter.

C. Realistic PET System

First, we study the PW observer. For a realistic system,Psys 6= B′, we have

SNR2
PW,MAP

SNR2
PW,FBP

≈ κ2
jξ

2
j

f ′
lP

′
sysPsysf l

f ′
lP

′
sysB

′(BB′)−1BPsysf l

. (40)

3If the local impulse response of a point source can be approximated by a Gaussian function, and the reconstruction preserves

activity, the value of||z||2 is inversely proportional to the FWHM.
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SinceB′(BB′)−1B is the projection operator onto the range space ofB′, we have

f ′
lP

′
sysPsysf l

f ′
lP

′
sysB

′(BB′)−1BPsysf l

≥ 1, (41)

where equality is achieved if and only ifPsysf l ∈ Range(B′). However, in general, this condition is not

satisfied due to depth-dependent sensitivity and detector blurring effects. This indicates that in addition

to the benefit of modeling of the Poisson statistics of the data, MAP reconstruction can also improve the

lesion detectability through accurately modeling the photon detection process of PET systems.

Next, we will prove similar results also hold for the NPW observer. We rewriteSNRNPW,FBP for the

realistic system as

SNR2
NPW,FBP ≈ 1

ξ2
j

[∑
i w

2
i ζ

2
i λ̃2

i (j)
]2

N
∑

i w
4
i τiζ2

i λ̃2
i (j)

. (42)

To achieve the highest resolution, we set the filter to

wi =
1
λ̃i

to deconvolve the blurring inBPsys. ThenSNRNPW,FBP changes to

SNR2
NPW,FBP ≈ 1

ξ2
j

(∑
i ζ

2
i

)2
N
∑

i τiζ2
i /λ̃2

i (j)
. (43)

Similarly, we setβ = 0 in (25) and obtain theSNRNPW,MAP of MAP reconstruction at the highest

resolution,

SNR2
NPW,MAP ≈ κ2

j

(∑
i ζ

2
i

)2
N
∑

i ζ
2
i /λi(j)

. (44)

Again using the property thatB′[BB′]−1B is the projection operator, we have

f ′P ′
sysPsysf ≥ f ′P ′

sysB
′(BB′)−1BPsysf (45)

for any vectorf . By settingf to each Fourier transform basis function, we obtain

λi(j) ≥ λ̃2
i (j)/τi. (46)

Therefore,
SNR2

NPW,MAP

SNR2
NPW,FBP

≥ κ2
jξ

2
j , (47)

where equality is achieved if and only ifPsysf l ∈ Range(B′). This proves that at the highest resolution

MAP reconstruction is superior to FBP. The reconstructions obtained with other filters (for FBP) orβ

value (for MAP) are equivalent to applying a filter to the highest resolution images. As indicated in Fig.
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3, the MAP-type filter is at least as good as the other filters commonly used with the FBP method, so we

can expect MAP reconstruction to maintain higher SNR for lesion detection than FBP reconstruction at

all resolution levels due to proper modeling of noise in the PET data and accurate modeling of the photon

detection process.

VI. CONCLUSIONS ANDDISCUSSION

We have theoretically studied lesion detectability of MAP reconstruction using the prewhitening and

non-prewhitening observers and have compared the results to that of FBP reconstruction. The PW ob-

server shows how much information is contained in reconstructed images, and the NPW observer partly

predicts the performance of a human observer. We theoretically proved that the MAP algorithm can im-

prove lesion detectability through accurately modeling the Poisson statistics in the data and the photon

detection process in PET. Information for lesion detection is reduced in FBP reconstructions due to ignor-

ing Poisson statistics and using the line integral model. With the PW observer and MAP reconstruction

with quadratic smoothing priors, the ultimate lesion detectability is independent of the smoothing pa-

rameter and neighborhood. A nonquadratic prior and other prior information may further increase lesion

detectability.

In this paper we used the SKE-BKE task and focused on detecting small lesion in the “low noise”

situation. The analysis precludes the non-negativity constraints used in MAP reconstruction, but the

result is a fair comparison to the regular FBP algorithm since FBP reconstruction may be improved by

post processing using non-negativity constraints as well [37]. We note, however, the SKE-BKE task is a

highly simplified scenario compared with real clinical detection tasks. Future work is needed to include

randomness in both lesion and background.

In the analysis we have assumed that MAP reconstruction uses the exact system model because MAP

reconstruction is amenable to arbitrary and complicated system models. However, in practice, the true

system response is not exactly known, so there is always some error in the system model. If we consider

such errors in the analysis, the performance of MAP reconstruction will be degraded by a factor shown

in (41) with B equal to the projection matrix used in the MAP reconstruction. The degradation should

be relatively small and insignificant, provided that the depth-dependent solid angle effect and detector

response are properly modeled [23]. In this study we also assumed that the noise only comes from the

Poisson statistics of the photon detection. In future studies we plan to include errors in normalization and

attenuation correction factors.

As we have shown, proper detection of lesions relies heavily on the knowledge of the response to
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lesions, i.e., the observer template. In human observer studies such knowledge is acquired in the training

process. As the FBP and MAP reconstructions both have spatially variant properties, the training process

should include a large number of data sets. This is not a problem for FBP reconstruction, since most

physicians are well trained to read FBP images. However, familiarizing physicians with MAP images is

very important in human observer ROC studies; otherwise, results may be highly biased.
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